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Abstract Experimental EC50s for 202 human β3-AR ago-
nists are used to develop classification models as a potential
screening tool for a large library of target compounds before
synthesis. A variable selection approach from random for-
ests (VS-RF) is used to extract the structural information
most relevant to the human β3-AR activation properties of
the collected data set. The obtained results indicate that the
VS-RF method can be used for variable selection with small-
est sets of non-redundant descriptors with highly predictive
accuracy (Qex% = 96% for the external prediction set). Thus,
the proposed VS-RF models should be helpful for screening
of potential human β3-AR agonists before chemical synthe-
sis in drug development.

Keywords Human β3-adrenergic receptor agonists ·
Variable selection · Dragon descriptors · Random forest

Introduction

Overactive bladder (OAB) is defined as urinary urgency with
or without urgency incontinence, and the number of patients
with OAB is estimated to be about 16% of adult popula-
tion in the United States which is still steadily increasing
worldwide [1]. The classical symptoms of OAB are urinary
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frequency and nocturia which seriously influence the life
quality of the patients, and thus inducing an urgent require-
ment for corresponding therapeutic agents of the disease.
Nowadays, the antimuscarinic agents that induce relaxation
of the detrusor muscle have been widely used in the treatment
of OAB [2]. These agents, however, have adverse effects
such as dry mouth, constipation, and the potential for void-
ing difficulty in patients with poorly contractile bladders [2].
Consequently, drugs without these disadvantages would be
a significant improvement over current therapy. Recently, it
has been reported that β3-AR, one of the three sub-types of
β-AR (the other two are β1- and β2-ARs) which is a member
of the G-protein coupled receptor (GPCR) family, is predom-
inantly expressed in detrusor tissues in human, and its acti-
vation induces the relaxation of urinary bladder detrusor [3].
In addition, the concomitant activation of β1- and β2-ARs
would cause undesirable side effects such as increased heart
rate and/or muscle tremors. Therefore, β3-AR agonists are
expected to be new therapeutic candidates against OAB [4].
Besides, β3-AR also mediates various pharmacological and
physiological effects such as lipolysis in white adipocytes
and thermogenesis in brown tissue adipocytes [5]. Thus, the
β3-AR activators are also recognized as potential drugs for
the treatment of obesity and non-insulin-dependent diabetes.

Up to now, two generations of β3-AR agonists have been
developed. The first generation, some potent and selective
rat β3-AR agonists [6,7] such as BRL37344, CL316243, and
FK175, has been reported to be effective anti-obesity and anti-
diabetic agents in rodents. Unfortunately, these agonists dis-
coveredduringthe1980swerefoundunsuccessful intheclinic
either because of a lack of efficacy or due to an unfavorable
cardiovascular side effect profile and/or poor pharmacokinet-
ics[8].Thus,asecondgenerationoforallybioavailablehuman
β3-AR agonists with minimal side effects associated with the
activation of β1- and β2-ARs has been a new target of recent
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research. Great efforts have been concentrated on the synthe-
sis of selectiveβ3-AR agonists [6,9,8–11] such as LY377604,
L796568, solabegron, and others; however, but these agonists
are still not potent in terms of the pharmacokinetic properties.
In light of these facts, Hattori et al. [12–17] have made contin-
uous efforts and synthesized a large series of human β3-AR
agonists toward improving the potency and selectivity over
human β1- and β2-ARs with good oral bioavailability, which
makes it possible for later computational research.

As we know, in the laboratory, more accurate activity
measurement generally requires more time and greater com-
pound supply, which significantly slows down the process.
Thus, the application of in silico methods such as quanti-
tative structure–activity relationship (QSAR) to this issue
could be considered at low cost before choosing a synthetic
strategy [18] if the activity can be predicted only from the
chemical structures. Nowadays, a dramatic increase in suc-
cessful development of predictive, or computational models
such as the prediction of P-glycoprotein substrates and inhib-
itors [19], androgenic and nonandrogenic compounds [20],
PKCθ inhibitory activity [21], multidrug resistance reversal
activity based on atom typing [22] and so forth can be seen.
However, there is still, to our best knowledge, limited report
of computational model to predict human β3-AR antago-
nists up to date. Once Telvekar et al. [23] performed three-
dimension QSAR study and pharmacophore mapping of a
series of 80 biphenyl benzoic acid derivatives, the first two
part of study reported by Hattori et al. [12,13], as selective
human β3-AR agonists. Using Pharmacophore Alignment
and Scoring Engine (PHASE), they proposed a six-point
common pharmacophore hypothesis with one acceptor, one
negative charge, one positive charge, and three rings for phar-
macophore-based alignment of molecules. And their subse-
quent comparative molecular field analysis (CoMFA) [24]
and comparative molecular similarity index analysis (CoM-
SIA) [25] studies gave a predictive r2 value of 0.664 and
0.867, respectively. They concluded that substitution of ste-
rically favored groups at the biphenyl benzoic acid moiety
with ether linkage and at methylene attached to amino and
dibenzoic acid moieties increase the activity, and the phenyl
ethanolamine moiety is responsible for providing pharmaco-
phoric binding sites. While, in this study, we have enlarged
the data set to 202 human β3-AR agonists by collecting all six
parts of Hattori’s continuous study [12–17], with attempt to
build high predictive classification models for rapid screen-
ing of potent β3-AR agonists before synthesis.

Construction of a computational model often requires two
basic elements. The first factor is the molecular descrip-
tors that are used to capture the structural information of
the molecules studied and correlate with the experimental
observations. Since dragon software, a sophisticated program
for calculation of molecular descriptors [26] developed by
Milano Chemometrics and QSAR Research Group, has a

quite good record of successful applications in various QSAR
researches, presently we also employ it to calculate molecular
descriptors based on only the two-dimension structures of the
molecules expressed by SMILES notations, which require no
specific orientation or through-space distances and thus alle-
viate theneedforgeometryoptimizationof thestructures [27].

Another critical procedure is the choice of the data analy-
sis approaches, since the assumptions that underpin a partic-
ular methodology must be shown to apply to the data under
investigation. Often used classification methods include the
simple but interpretable LDA and PLS, and nonlinear, rela-
tively not being prone to interpretable but often having highly
predictive methods such as SVM, RF, and so forth [20,28].
All these methods have a proven record of many successful
applications in computational modeling. However, several of
them suffer, sometimes, several limitations. Generally speak-
ing, the largest limitation is the conditions where the number
of the samples (n) is less than that of the descriptors (p).
Under this circumstance, traditional statistical method like
LDA can not be correctly applied unless a pre-selection of the
descriptors is executed (e.g., by genetic algorithms [27,29]
or genetic function approximation [30], etc). SVM, a non-
linear technique employed in classification problems, is also
not robust to the presence of a large number of irrelevant
descriptors [28]. Random forest (RF) has been reported as
the combination of relatively high prediction accuracy and
collections of desired features, which makes RF uniquely
suited for modeling in cheminformatics [28] including pre-
diction of quantitative or categorical biological activity of
an unknown chemical based on a quantitative description
of its molecular structure. RF can show excellent perfor-
mance even when most predictive variables are noise, and
be used when the number of variables is much larger than
the number of observations, and returns measures of the var-
iable importance. However, for approaching an ideal classi-
fication model (with high classification accuracy using less
number of descriptors), a variable selection process is still
required. To achieve the above object, in this study, a vari-
able selection method by RF (described as “VS-RF” in this
article) combined with the backward elimination using out-
of-bag (OOB) error is selected to perform classification task
for the current human β3-AR agonists. Originally, this novel
approach was proposed for gene selection and classification
of microarray data, which has been proven as often yield-
ing smaller sets of genes than alternative variable selection
methods while retaining the predictive performance [31].
Although this method has been successfully applied in the
field of gene selection and microarray data [31], there is still
no record up to now of developing computational models for
small molecular agonists. To extend the range of application,
presently we examined the VS-RF combination method to
classify the current dataset of β3-AR agonists. For compari-
son, two other alternative methods (SVM and LDA) were also
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performed on the basis of same selected descriptors within
the same data sets. The obtained models, we hope, would be
helpful for screening and identifying of potential β3-AR ago-
nists in a large library of target compounds before chemical
synthesis.

Material and experimental methods

Data sets

A large, diverse dataset of 202 human β3-AR agonists col-
lected from articles [12–17] published by a same research
group with EC50 values ranging from 0.03 to larger than
100 nM were used as dataset in this study. Based on the inhibi-
tory activity, the dataset is split into two classes, i.e., 102 low
active (L) compounds with the range of EC50 from 1.4 to
>100 nM and 100 high active (H) ones with range from 0.03
to 1.3 nM. Table 1 depicts several representative compounds
together with their classification labels. All information of
the dataset with their diverse scaffolds of structures is pro-
vided in Table S1 (Supplementary Information).

Descriptors calculation and pre-processing

In this study, the molecular structures of all agonists were
built with the ISIS/Draw 2.3 program [32], and converted
the SMILES format for calculation of their structural descrip-
tors by Dragon soft [26]. These calculated descriptors have
been reported using successfully in QSAR analysis [33].
Currently, 13 descriptor blocks for each molecule were
calculated, including the constitutional and topological
descriptors, walk and path counts, connectivity indices,
2D autocorrelations, edge adjacency indices, Burden eigen-
values, topological charge and eigenvalue-based indices,
functional group counts, atom-centered fragments, and
molecular properties. Actually, originally Dragon calculated
929 molecular descriptors for each molecule. However, after
excluding 263 constant or near-constant descriptors, we
finally saved 666 ones which were further undertaken a pre-
processing process (also called unsupervised selection of
descriptors) as follows: (1) descriptors containing larger than
85% zero values were removed; (2) zero- and near zero-
variance predictors were deleted; and (3) one of the two
descriptors that have absolute correlations above 0.95 was
omitted. After these steps, the number of original descriptors
was reduced to 281 for further research.

Split of the training and test sets

Rational division of an experimental SAR dataset into respec-
tivetrainingandtestsetsformodeldevelopmentandvalidation
is very important. The often used methods include random
sampling (RS), Kennard–Stone (KS), K -mean clustering,

self-organizing map (SOM), principal component analysis
(PCA), etc.Thebasic rule shouldbe that thepointsof the train-
ing set are distributed evenly within the whole area occupied
by representative points, and the condition of closeness of the
test set points to the training set ones is satisfied [34].

For the independent prediction set, we performed our
selection on the basis of their distribution in the chemical
space defined by PCA. In order to detect the homogeneities
in the data set and identify possible outliers and clusters,
PCA is performed within the calculated structure descriptors
space for the whole data set. PCA is a useful multivariate
statistical technique in which new variables (called principal
components, PCs) are calculated as linear combinations of
the old ones. These PCs are sorted by decreasing informa-
tion content (i.e., decreasing variance) so that most of the
information is preserved in the first few PCs. An important
feature is that the obtained PCs are uncorrelated, and they
can be used to derive scores which can be used to display
most of the original variations in a smaller number of dimen-
sions. These scores can also allow us to recognize groups of
samples with similar behaviors.

Statistical methods

VS-RF

Random forest is a classification algorithm that uses an
ensemble of unpruned decision trees, each of which is built
on a bootstrap sample of the training data using a randomly
selected subset of variables [35]. The random forest holds a
number of appealing features making it well suited for per-
forming classification task: (1) it is applicable when there are
less observations than descriptors (predictors); (2) it performs
embedded descriptor selection and it is relatively insensitive
to the large number of irrelevant predictors; (3) it is based on
the theory of ensemble learning that allows the algorithm to
learn accurately both simple and complex classification func-
tion, and (4) it does not require much fine-tuning of param-
eters, and the default parameterization often leads to good
performance [28,35].

Random forest has been successfully applied in the cancer
microarray gene expression domain, but less in QSAR and
QSPR (quantitative structure–property relationship) fields
[21,28]. Thus, it should be of value to investigate whether RF
can be applied to and obtains better statistical performance
for the current dataset of human β3-AR agonists. Here, only
a brief introduction about RF is presented, since more details
could be referred to the corresponding literatures [28,35].
In this study, the RF algorithm was employed using the R
package randomForest [36].

Even thoughRFclassifier is fairly insensitive to thenumber
of irrelevant descriptors, we still applied following descrip-
tor selection methods to further improve the classification
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Table 1 Representative compounds together with their classification labels for human β3-AR agonists

No. Substituent EC50 (nM) Classa Ref.b

X R

1c O p-OCH2CO2H 48 L [12]

2 NH p-OCH2CO2H 12 L [12]

3c NMe p-OCH2CO2H 100 L [12]

5 S p-OCH2CO2H 85 L [12]

R1 R2 R3

23 H F H 4.9 L [12]

26c H H Cl 9.7 L [12]

27 H H OMe 12 L [12]

R

172 NH-c-Hex 0.14 H [16]

173c iso-Bu 0.46 H [16]

174 c-Pen 0.41 H [16]

176 CH-c-Hex 0.54 H [16]

R1 X R2 R3 R4

199 3-OH CH H H O-iso-Pr 0.044 H [17]

201c 4-OH CH CH3 H O-c-Hex 0.35 H [17]

202 4-OMe CH CH3 H O-c-Hex 28 L [17]

a H denotes high active compounds, L denotes low active compounds; b From the corresponding reference; c Test set

performance and increase the computational efficiency. To
select the best set of descriptors, presently random forest-
based backward elimination procedure was performed. The
procedure involves iteratively fitting RFs and at each iteration
building a new forest after discarding those descriptors with
the smallest importance values; the selected set of descriptors
is the one with the smallest OOB error rate. The variable selec-
tion procedure was achieved using the R package varSelRF

[37]. We applied it with the recommended parameters: ntree
= 2000, fraction.dropped = 0.2 (a parameter indicating frac-
tion of descriptors with small importance values to be dis-
carded during backward elimination procedure), mtryFactor
= 1, nodesize = 1 and c.sd = 1 (a factor that multiplies the
standard deviation of error for stopping iterations and choos-
ing the best performing subset of descriptors). More details on
the this algorithm can be referred to literature [31].
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Support vector machine (SVM)

SVMs are a machine learning algorithm originally devel-
oped by Vapnik and co-workers [38]. SVM approach auto-
matically controls the flexibility of the resulting classifier on
the training data. By design of the algorithm, the deteriorat-
ing effect of the input dimensionality on the generalization
ability is greatly suppressed. Due to its many attractive fea-
tures and promising empirical performances, SVM is gaining
increasing popularity in many fields, and thus was also per-
formed in this study. The Gaussian RBF kernel was used in
our experiment.

k(x, x ′) = exp(−σ
∥
∥x − x ′∥∥2

) (1)

With this kernel, two parameters (C and σ ) were determined
in the SVM model using 10-fold cross validation. And the R
package kernlab [39] was used to develop the SVM classifi-
cation model.

Linear discriminant analysis (LDA)

LDA is a multivariate statistical procedure that aims to
split objects into two or more categories. The basic the-
ory of LDA is to classify the dependents by dividing an
n-dimensional descriptor space into two regions that are sep-
arated by a hyperplane defined by a linear discriminant func-
tion

(

y = c + ∑
bi xi

)

. This is optimized by adjusting c and
bi to obtain a maximum separation of the two classes. In this
study, the independent variables were the calculated molec-
ular descriptors, and the discrimination property was EC50

(represented by either high or low active compounds). LDA
analysis was performed using the R package MASS [40].

Evaluation of the statistical performance

The performances of VS-RF, SVM, and LDA were measured
using several statistics:

(1) Accuracy: the proportion of correctly classified
instances:

Accuracy = TP + TN

TP + TN + FP + FN
(2)

where true positives (TP) denote the correct classifica-
tions of positive examples (i.e., high active agonists in
this study); true negatives (TN) are the correct classifi-
cations of negative examples (i.e., low active agonists
here); false positives (FP) represent the incorrect clas-
sification of negative examples into the positive clas-
ses; and false negatives (FN) are the positive examples
incorrectly classified into the negative classes.

(2) Sensitivity: the percentage of positive examples which
are correctly classified;

Sensitivity = TP

TP + FN
(3)

(3) Specificity: the percentage of negative examples which
are correctly classified;

Specificity = TN

TN + FP
(4)

(4) Positive predictive value (PPV): the percentage of the
examples predicted to be positive that are correct;

PPV = TP

TP + FP
(5)

(5) Negative predictive value (NPV): the percentage of
examples predicted to be negative that are correct;

NPV = TN

TN + FN
(6)

In order to show how the classification system performs on
the high active and low active compounds separately, the
confusion matrix, which can transfer more information on
the statistical results, for the best model is shown in the fol-
lowing form (Table 2).

In additional to above criteria, Matthews correlation coef-
ficient (MCC) [41], which indicates the accuracy of real and
estimated class, respectively, is also used to measure the pre-
diction accuracies and can be given as follows:

MCC= TP × TN − FN × FP√
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

(7)

Results and discussion

PCA of the dataset

As a kind of multivariate statistical technique that can be
used for clustering, visualization, and abstraction tasks, PCA
is suitable for data survey due to its visualization properties
which have been successfully applied to dataset split [42].
In the current work, PCA gives three significant PCs, which
together explain 54.68% of the variation in the data (with
first PC 33.21%, second PC 12.67%, and third PC 8.80%,
respectively). Figure 1 demonstrates the distribution of the
molecules, where the blue asterisk denotes the training set
and red hexagram stands for the test set, respectively. As
seen from this figure, on one hand, representative points of
the test set are close to those of the training one and on the
other hand, the training and test sets uniformly occupy the
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Table 2 The format of
confusion matrix for the best
classification model

Observed Total %Correct

H L

Predicted
H TP FP TP + FP PPV

L FN TN FP + TN NPV

Total TP + FN FP + TN TP + FP + FN + TN

%Correct Sensitivity Specificity Accuracy

Fig. 1 Principal components
analysis of the structural
descriptors for the human
β3-AR agonists. Asterisks and
hexagrams denote the training
and test set compounds,
respectively

whole chemical space, which both indicate a rational selec-
tion of the training and test compounds in this study.

The training set was used for the development of the classi-
fication models with variable selection, and the independent
prediction set was used for the assessment of the system. The
training and independent test sets contain 152 (75 high active
and 77 low active) and 50 (25 high active and 25 low active)
compounds, respectively, with approximately one-fourth of
the respective groups assigned in the independent prediction
set. Table S1 (Supplementary Information) lists the structures
of all the molecules.

Selected descriptors using VS-RF

Apart from the quality of the data sets used, the selection of
descriptors relevant to human β3-AR activity is also impor-
tant for optimization of the prediction system by reducing the
noise and increasing computational efficiency in a statistical
learning process. A VS-RF strategy has been developed suc-
cessfully, with the final number of descriptors being reduced
to 3 from the original 281 for further study. Since it is rec-
ommended that the number of compounds in the training set

should be at least five times larger than that of the selected
independent variables [43], the model developed by VS-RF
obviously maintains the recommended ratio. Table 3 lists the
selected descriptors together with their definitions, and Table
S2 (Supplementary Information) lists their values.

Performance evaluation

To estimate the performances of the statistical learning meth-
ods for prediction of the diverse set of β3-AR agonists, it is
useful to examine whether the accuracy from the three dif-
ferent statistical methods (VS-RF, SVM, and LDA) is at a
similar level. Tables 4 and 5 summarize the detailed statis-
tics, where the predicted results by the methods are presented
in Table S3 (Supplementary Information).

A set of 152 agonists are chosen as a training set to derive
the binary classification models and optimize the developed
models, while the external test set including 50 compounds
is only used to estimate the model performances. As a clas-
sification algorithm, random forest, generally, has only one
parameter (i.e., mtry) that could be considered a tuning var-
iable. Although it was shown in a previous report [28],
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Table 3 The selected 3 descriptors using VS + RF and their definition

Descriptors Definition Class

BELm4 Lowest eigenvalue n. 4 of Burden matrix/weighted by atomic masses BCUT descriptors

BELp4 Lowest eigenvalue n. 4 of Burden matrix/weighted by atomic polarizabilities BCUT descriptors

BELv4 lowest eigenvalue n. 4 of Burden matrix/weighted by atomic van der Waals volumes BCUT descriptors

Table 4 Confusion matrices for
the VS-RF using human β3-AR
agonists

Observed Total %Correct

H L

Training set

Predicted
H 73 1 74 98.65

L 2 76 78 97.44

Total 75 77 152

%Correct 97.33 98.70 98.03

Test set

Predicted
H 24 1 25 96.00

L 1 24 25 96.00

Total 25 25 50

%Correct 96.00 96.00 96.00

Table 5 The prediction performance of high and low active compounds as human β3-AR agonists from VS-RF, SVM, and LDA statistical methods
for the external prediction set

Modela High active agonists Low active agonists Qex (%) MCC

TP FN SE (%) TN FP SP (%)

VS-RF 24 1 96.00 24 1 96.00 96.00 0.92

SVM 24 1 96.00 22 3 88.00 92.00 0.84

LDA 23 2 92.00 24 1 96.00 94.00 0.88

a RF, mtry = 1; SVM, C = 0.1, σ = 5.6

although it has been shown that the performance of RF using
a fixed set of descriptors is often relatively insensitive to the
choice of mtry specified as a function of number of descrip-
tors (p1/2 for classification), it is still necessary to attempt the
variation of this value [20]. Since the number of final selected
descriptors is three, the mtry value is just tried from 1 to 3, the
optimal one of which is determined by 10-fold cross-valida-
tion accuracy (Qcv = 0.80). Ultimately, optimal RF results
are obtained based on mtry = 1 and 500 trees in the forest.
The confusion matrix for the optimal VS-RF model is given
in Table 4. For the training set, the sensitivity is 97.33% (73
out of 75 high active compounds are correctly classified), and
specificity is 98.70% (76 out of 77 low active compounds are
correctly classified). Thus, both the sensitivity and specificity
of the optimal VS-RF model show a perfect classification for

the human β3-AR agonists. Finally, an encouraging overall
accuracy of 98.03% is obtained for the training set.

The validation of QSAR models is important because it
assesses the model’s reliability and prediction ability. Thus,
both the external and internal validations are performed,
where the internal validation is based on the training set data
and the external one accomplished using a separate set of
data (the test set) that is not used in the model development.

Here, the classification results in VS-RF for the test set is
listed in Table 4. For the 50 tested compounds including 25
high active and 25 low active ones, the statistics for the set
(sensitivity = 96%, specificity = 96, and overall Q = 96%)
exhibited good performances similar to the training set, prov-
ing the reliability and high predictive capacity of the proposed
VS-RF model.
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For comparison with the VS-RF, two other popular algo-
rithms, SVM and LDA, are also performed using the same
data set as VS-RF. Table 5 shows the detailed comparison
results for the external prediction set. Based on the selected
descriptors, the state-of-art implementation of SVM avail-
able in the R package kernlab is also employed for achieving
classifications. Similar to other multivariate statistical mod-
els, the performance of SVM depends on the combination
of several parameters including the capacity parameter C ,
the kernel type K , and its corresponding indices. C is a reg-
ularization parameter which controls the tradeoff between
maximizing the margin and minimizing the training error. In
this study, the grid search technology was employed to obtain
the optimum parameters (C and σ ) using the R package caret
[44] on the basis of 10-fold cross validation. Here, the func-
tion sigest in the kernlab package was used to provide a good
estimate of the σ parameter, so that only the C parameter was
tuned. The final values used in the model are C = 0.1 and
σ = 5.6 with the highest 10-fold cross-validation accuracy
(0.77). Using the determined optimal parameters, the SVM
obtains statistical results of 96, 88, and 92% for the sensi-
tivity, specificity, and overall external accuracy (Qex) of the
test set, respectively. And the MCC achieves 0.84 (Table 5).

Since the above depicted methods all based on a nonlin-
ear technique, it is interesting to attempt a linear method
to separate the categories of the studied compounds. Thus,
LDA, a widely used classification technology, was also car-
ried out to class the current dataset based on the selected three
descriptors. As shown in Table 5, LDA gives relatively low
sensitivity of 92%, specificity of 96% with a total accuracy of
94%. For the additionally statistical parameter, MCC, LDA
gives 0.88 for the external prediction set.

Comparison of different approaches

After the above discussion, it can be concluded that although
the performances of all three methods are comparative,
VS-RF still performs slightly non-significant better than
the others in terms of internal (Qcv = 0.80) and external
(Qex = 0.96) prediction ability. Another popular machine
learning method, SVM, though keeps a same high sensitivity
as that of VS-RF indicating that both of them possess ability
with high correct classification of the high active agonists,
gives a relatively low specificity of 88% with the reduction
in specificity of 8% compared to that of the VS-RF model,
and the value of its MCC is also the lowest one (0.84) among
the three models. In addition, by comparing with SVM, LDA
decreases by 4% in the sensitivity, while increases by 8% in
the specificity (as up to 96%) which is the highest one among
the three models. Therefore, LDA also presents high pre-
diction accuracy. In summary, by a comparison of the three
models obtained in this study, the order of them in overall
predictivity performance is VS-RF > LDA > SVM.

Fig. 2 The ROC curves of VS-RF, SVM, and LDA for the prediction
set

The area under the ROC curve (AUC) is also considered as
an important criterion for measuring the performance of the
model [22]. The ROC curve demonstrates the model’s sen-
sitivity, the ability to identify true positives, and specificity,
the ability to avoid false negatives. The area under the ROC
curve is a quantitative measure of the model performance.
An AUC value of 1 indicates a theoretically perfect perfor-
mance, while a value of 0.5 denotes no prediction ability.
Clearly, the closer the AUC value is to 1, the better the model
performance is. Figure 2 gives the ROC curves of VS-RF,
SVM, and LDA for the prediction set. The computed AUC
values of the three statistical methods are 0.96, 0.95 and 0.97,
respectively, indicating good prediction ability and reliabil-
ity of all three statistical models. However, when inspecting
and comprising the three methods, it is noted that VS-RF
seems to outperform the other two since, for the test set,
there are only two misclassifications, while the SVM and
LDA models present four and three wrongly classified com-
pounds, respectively (Table 5). The reasons for the better per-
formance of VS-RF may be that as an ensemble algorithm,
the random forest approach, by constructing an ensemble
out of all of these accurate classifiers, can “average” their
votes and reduce the risk choosing the wrong classifier. Pre-
vious literature [28] also illustrates that random forest suited
for modeling in QSAR field. However, it should also be
kept in mind that no single technique can claim to be uni-
formly superior to any other. For example, the nonlinear algo-
rithm of SVM has been reported outperformed LDA [45],
while in this study, the performance of LDA is slightly bet-
ter than that of SVM. Therefore, to aim directly at different
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research systems, one should attempt multiple methods to
find the optimal one to study further. In this study, we consider
VS-RF as the best classifier for achieving current classifica-
tion task.

Y -Randomization check for VS-RF

Y -randomization, randomly scrambling the responses, is
another validation approach that should be used in parallel
with cross validation, and be applied to test the significance
of the derived model [43]. In order to further investigate
the validity of the generated VS-RF model here, we have
repeated 100 Y -randomization checks and compared with
the prediction statistics without such checks. In all random
shuffles of the Y vector we tried, we noted that the values of
sensitivity, specificity, and Qex are all significantly reduced
(more than 40%) for the prediction set. All these illustrate
that the developed prediction model by VS-RF is not due to
a chance correlation.

Interpretation of the selected descriptors

Using feature selection, the most appropriate sets of molec-
ular descriptors for predicting the low or high active β3-AR
agonists are extracted from the VS-RF models, the interpre-
tation of which might provide some new insights into the
physicochemical characteristics of human β3-AR agonists.

It is very interesting to note that in this study, all the three
parameters selected are BCUT descriptors (Table 3), who are
the eigenvalues of a modified connectivity matrix, the Bur-
den matrix [46]. The matrix is an H depleted molecular graph
defined as follows: diagonal elements are atomic numbers of
the elements (Zi ); off-diagonal elements (Bi j ), representing
bonded atoms i and j are equal to π∗ × 10−1, where π∗ is
the conventional bond order (i.e., 1, 2, 3, 1.5 for single, dou-
ble, triple, and aromatic bonds, respectively); off-diagonal
elements corresponding to the terminal bonds are increased
by 0.01, and all other matrix elements are set to 0.001. The
ordered sequence of the n smallest eigenvalues of B was
proposed as a molecular descriptor based on the assump-
tion that the lowest eigenvalues contain contributions from
all the atoms and thus reflect the topology of the molecule.
The BCUT descriptors are an extension of the Burden eigen-
values and consider three classes of matrices whose diagonal
elements correspond to atomic charge related values, atomic
polarizability related values, and atomic H bond abilities.
A variety of definitions have been used for the off-diagonal
terms, and both 2D and 3D approaches are considered. The
highest and lowest eigenvalues of these matrices have been
shown to be discriminating descriptors [47]. BELm4 is the
lowest eigenvalue n. 4 of Burden matrix involving the atomic
masses as weighting scheme. BELp4 is lowest eigenvalue n.
4 of Burden matrix/weighted by atomic polarizabilities, and

BELv4 is lowest eignvalue n. 4 of Burden matrix/weighted
by atomic van der Waals volumes.

In fact, the BCUT metrics have been successfully applied
to QSAR studies. For example, Stanton [48] has found the
BCUT metrics can provide unique information regarding the
molecular structures and make significant contributions to
resulting equations; In 2000, Pirard and Pickett [49] correctly
classified the kinase inhibitors using the PLS discriminant
analysis coupled with the BCUT descriptors, and thereaf-
ter the author [29] also presented an application of BCUT
metrics and genetic algorithm in binary QSAR analysis with
highly predictive models obtained. In addition, Ford et al.
[50] applied both the LDA and a committee of neural net-
works using BCUT parameters as input variables to recog-
nize compounds that act at biological targets belonging to
protein kinases. Their results illustrated that BCUT metrics
have utility in discriminating compounds that interact with
particular gene families. Here, our highly predictive classi-
fication models further indicate that BCUT descriptors are
useful in QSAR studies and should be extensively applied in
the further study.

In summary, from the aforementioned discussion, it can
be seen that the activity of these human β3-AR agonists
is mainly influenced by several factors including atomic
masses, atomic polarizabilities, and van der Waals volumes.
Our results are partly in agreement with the previous research
[23]. For example, in their common pharmacophore hypoth-
esis features, an acceptor, a negative charge and a positive
charge are included, which are proven by our selected struc-
ture information (atomic polarizabilities). It also should be
pointed out that though some structure features selected by
our study cannot directly instruct the structural improve-
ment of human β3-AR agonists, in terms of developing a
highly predictive classification model; however, the proposed
VS-RF model in this study could implement this task
(Tables 4 and 5).

Conclusions

In this study, based on the up-to-date largest dataset to our
best knowledge of 202 structurally diverse human β3-AR
agonists, a VS-RF classification model with good predictive
performance (with an overall Q = 96% for the prediction set)
has been built. By explanation of the selected descriptors, we
conclude that atomic masses, atomic polarizabilities, and van
der Waals volumes play a central role in the β3-AR inhibi-
tion, which is supported by previous research [23]. Moreover,
a comparison with other two statistical methods (i.e., SVM
and LDA), the VS-RF model presents slightly non-significant
better statistics both from the internal and external valida-
tions. Therefore, we hope that the proposed VS-RF method
and the derived model would be of help for predictive tasks to
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screen new and potent human β3-AR agonists in early drug
development.
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